Forecasting time series of the market indicators based on a nonlinear autoregressive neural network
https://doi.org/10.21686/2500-3925-2017-3-4-9
Abstract
About the Authors
Denis V. DomashchenkoRussian Federation
Cand. Sci. (Economics)
Edvard E. Nikulin
Russian Federation
References
1. Sims C. A. Macroeconomics and reality // Econometrica: Journal of the Econometric Society. 1980. P. 1–48.
2. Johansen S. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models // Econometrica: Journal of the Econometric Society. 1991. P. 1551–1580.
3. Box G. E. P., Jenkins G. M. Time Series Models for Forecasting and Control // San Francisco. 1970.
4. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation // Econometrica: Journal of the Econometric Society. 1982. P. 987–1007.
5. Zhang X. and Frey R. Improving ARMAGARCH forecasts for high frequency data with regime-switching ARMA-GARCH // Journal of Computational Analysis & Applications. 2015. 18(1).
6. Kambouroudis D.S., McMillan D.G. and Tsakou K. Forecasting Stock Return Volatility: A Comparison of GARCH, Implied Volatility, and Realized Volatility Models // Journal of Futures Markets. 2016. 36(12). P. 1127–1163.
7. Corrêa J.M., Neto A.C., Júnior L.T., Franco E.M.C. and Faria A.E. Time series forecasting with the WARIMAX-GARCH method. Neurocomputing. 2016. P. 805–815.
8. Leontaritis I. J., Stephen A. Billings. Inputoutput parametric models for non-linear systems part I: deterministic non-linear systems. // International journal of control. 1985. 41.2. P. 303–328.
9. Chen S., Billings S. A. Representations of non-linear systems: the NARMAX model // International Journal of Control. 1989. Т. 49. No. 3. P. 1013–1032.
10. Darrat A. F., Zhong M. On testing the randomwalk Hypothesis: A model-comparison approach // Financial Review. 2000. Т. 35. No. 3. P. 105–124.
11. Jiang C. and Song F. Sunspot Forecasting by Using Chaotic Time-series Analysis and NARX Network // JCP. 2011. 6(7). P. 1424–1429.
12. Diaconescu E. The use of NARX neural networks to predict chaotic time series // Wseas Transactions on computer research. 2008. 3(3). P.182–191.
13. Chaudhuri T.D. and Ghosh I. Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework // arXiv preprint. 2016. arXiv:1607.02093
14. Akaike H. Maximum likelihood identification of Gaussian autoregressive moving average models // Biometrika. 1973. P. 255–265.
15. Adkinson M. D. et al. Alternative models of climatic effects on sockeye salmon, Oncorhynchus nerka, productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia // Fisheries Oceanography. 1996. Т. 5. No. 3–4. P. 137–152.
Review
For citations:
Domashchenko D.V., Nikulin E.E. Forecasting time series of the market indicators based on a nonlinear autoregressive neural network. Statistics and Economics. 2017;(3):4-9. (In Russ.) https://doi.org/10.21686/2500-3925-2017-3-4-9