Вычисление истинного уровня значимости предикторов при проведении процедуры спецификации уравнения регрессии
https://doi.org/10.21686/2500-3925-2017-3-10-20
Аннотация
Об авторе
Н. А. МоисеевРоссия
Кандидат экономических наук, доцент кафедры Математических методов в экономике
Список литературы
1. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petroc B., Csake F. (Eds.) Second International Symposium on Information Theory. 1973.
2. Akaike H. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting // Biometrika. 1979. 66. P. 237–242.
3. Bates J.M., Granger, C.W.J. The combination of forecasts // Operations Research Quarterly. 1969. 20. P. 451–468.
4. Buckland S.T., Burnham K.P., Augustin, N.H. Model selection: An integral part of inference // Biometrics. 1997. 53. P. 603–618.
5. Canning F.L. 1959. Estimating load requirements in a job shop // Journal of Industrial Engineering. 1959. 10. P. 447.
6. Derksen S., Keselman H.J. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables // British Journal of Mathematical and Statistical Psychology. 1992. 45. P. 265–282.
7. Hurvich C.M., Tsai C.L. The impact of model selection on inference in linear regression // The American Statistician. 1990. 44. 3. P. 214–217.
8. Kramer C.Y. Simplified computations for multiple regression // Industrial Quality Control. 1957. 13. 8. 8.
9. Larzelere R.E., Mulaik S.A. Single-sample tests for many correlations // Psychological Bulletin. 1977. 84. P. 557 – 569.
10. Lovell M.C. Data mining. The Review of Economics and Statistics. 1983. 65. P. 1–12.
11. Miller A. J. Selection of subsets of regression variables (with discussion) // Journal of the Royal Statistical Society. 1984. A. 147. P. 389–425.
12. Mittelhammer Ron C., Judge George G., Miller Douglas J. Econometric Foundations. Cambridge University Press. 2000. P. 73–74.
13. Moiseev N.A. Linear model averaging by minimizing mean-squared forecast error unbiased estimator // Model Assisted Statistics and Applications. 2016. Vol. 11, No 4, P. 325–338.
14. Shehata Yasser A., White Paul A Randomization Method to Control the Type I Error Rates in Best Subset Regression // Journal of Modern Applied Statistical Methods. 2008. 7. 2. P. 398–407.
15. Shibata Ritaei. Asymptotically efficient selection of the order of the model for estimating parameters of a linear process // Annals of Statistics. 1990. 8. Pp. 147–164.
16. Shibata Ritaei. An optimal selection of regression variables // Biometrika. 1981. 68. P. 45–54.
17. Shibata Ritaei. Asymptotic mean efficiency of a selection of regression variables // Annals of the Institute of Statistical Mathematics. 1983. 35. P. 415–423.
18. Wishart J. The generalized product moment distribution in samples from a normal multivariate population // Biometrica. 1928. 20A. P. 32–52.
19. Глазьев С. Проблемы прогнозирования макроэкономической динамики // Российский экономический журнал. 2001. № 3. C. 76–85; № 4. C. 12–22.
20. Крыштановский А.О. Методы анализа временных рядов // Мониторинг общественного мнения: экономические и социальные перемены. 2000. № 2 (46). С. 44–51.
Рецензия
Для цитирования:
Моисеев Н.А. Вычисление истинного уровня значимости предикторов при проведении процедуры спецификации уравнения регрессии. Статистика и Экономика. 2017;(3):10-20. https://doi.org/10.21686/2500-3925-2017-3-10-20
For citation:
Moiseev N.A. Calculating the true level of predictors significance when carrying out the procedure of regression equation specification. Statistics and Economics. 2017;(3):10-20. (In Russ.) https://doi.org/10.21686/2500-3925-2017-3-10-20