Preview

Статистика и Экономика

Расширенный поиск

ГИБРИДНЫЕ МОДУЛЯРНЫЕ НЕЙРОННЫЕ СЕТИ

https://doi.org/10.21686/2500-3925-2016-4-8-11

Аннотация

В работе рассматриваются гибридные нейросетевые подходы к прогнозированию временных рядов, в том числе методы, основанные на нечетких моделях, такие как ANFIS модели, а также предлагается гибридный нейросетевой подход, основанный на модулярных нейронных сетях.

Об авторе

Алексей Николаевич Аверкин
Вычислительный центр им. А.А. Дородницына ФИЦ «Информатика и управление» РАН
Россия
к. ф.-м. н., ведущий научный сотрудник отдела интеллектуальных систем


Список литературы

1. Wang, J.-S.; Ning, C.-X. ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm. Information 2015, 6, 300–313.

2. Alizadeh M. et al. Forecasting Exchange Rates: A Neuro-Fuzzy Approach // IFSA/EUSFLAT Conf. – 2009. – С. 1745–1750.

3. Gunasekaran, M. and Ramaswami, K.S., A Fusion Model Integrating ANFIS and Artificial Immune Algorithm for Forecasting Indian Stock Market (June 22, 2011). Journal of Applied Sciences, 11(16): pp. 3028–3033.

4. Tokunaga et al., 2009] Tokunaga K., Furukawa T. Modular network SOM – Neural Networks. №22, 2009. Pp 82–90.

5. Koskela T. Neural network methods in analyzing and modelling time varying processes – Espoo, 2003. Pp. 1–72.

6. Lotfi A., Garibaldi J. In Applications and Science in Soft Computing, Advances in Soft Computing Series Springer, 2003. Pp. 3–8.

7. A. Averkin, V. Albu, Veaceslav, S. Ulyanov and others. Dynamic object identification with SOM-based neural networks. In: Computer Science Journal of Moldova, 2014, nr. 22 1/64, pp. 110–126.


Рецензия

Для цитирования:


Аверкин А.Н. ГИБРИДНЫЕ МОДУЛЯРНЫЕ НЕЙРОННЫЕ СЕТИ. Статистика и Экономика. 2016;(4):8-11. https://doi.org/10.21686/2500-3925-2016-4-8-11

For citation:


Averkin A.N. HYBRID MODULAR NEURAL NETWORKS. Statistics and Economics. 2016;(4):8-11. (In Russ.) https://doi.org/10.21686/2500-3925-2016-4-8-11

Просмотров: 930


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3925 (Print)