Preview

Statistics and Economics

Advanced search

AUTOMATED SENTIMENT ANALYSYS EVALUATION OF SOCIAL NETWORK USERS BASED ON FUZZY LOGIC

https://doi.org/10.21686/2500-3925-2015-3-249-254

Abstract

In the article the method of automated sentiment analysisevaluation of social network users is represented. The advantage of suggested method consists in ability taking into accountuser’s authority as well as the fact of several messages from one user. As input data for the sentiment analysis with respect to a certain topic is its relevant messages. Automated analysisof these messages is obtained with application of fuzzy logicalgorithms. Particularly when in messages contains fuzzyhedges. The paper presents experimental data showing the steps of calculation of the resulting sentiment evaluation ofmessages on a certain topic.

About the Authors

Elena E. Luneva
Tomsk Polytechnic University
Russian Federation


Alexandr A. Yefremov
Tomsk Polytechnic University
Russian Federation


Pavel I. Banokin
Tomsk Polytechnic University
Russian Federation


References

1. URL: http://www.statisticbrain. com/ (дата обращения: 16.02.2015)

2. Dalal M.K., Zaveri M.A. Opinion Mining from online user reviews using Fuzzy Linguistic Hedges // Applied Computational Intelligence and So. Computing Volume. - 2014. Vol. 2014, № 735942. - P. 1-9.

3. Bollen J., Mao H., Zeng X.-J. Twitter mood predicts the stock market // Journal of Computational Science. - 2011. Vol. 2, № 1. - P. 1-8

4. Amit P., Tejashree W., Swati Rao M. Review of Online Product using Rule Based and Fuzzy Logic // Smiley’s International Journal of Computing and Technology. - 2014. Vol. 1, P. 39-44

5. Haque Md., Rahman T. Sentiment analysis by using fuzzy logic // International Journal of Computer Science, Engineering and Information Technology (IJCSEIT). - 2014. Vol. 4, № 1. - P. 33-48

6. Denecke K. Using SentiWordNet for multilingual sentiment analysis // Proceedings International Conference on Data Engineering. 2008. - № 4498370. - P. 507-512

7. ЗадеЛ. Понятиелингвистической переменной и его применение к принятию приближенных решений. - Москва: Мир, 1976. - 165 с.

8. Leekwijck W.V., Kerre E.E. Defuzzification: criteria and classification // Fuzzy Sets and Systems. - 1999. Vol. 108, № 2. - P. 159-178

9. ЕфремовА.А. Новыеоперации над нечеткими числами и интервалами // Доклады Томского государственного университета систем управления и радиоэлектроники. - 2013 - №. 1(27). - C. 95-99

10. Ходашинский И.А. Нечеткологическое оценивание величин // Известия Томского политехнического университета. - 2003. -Т. 306, № 3. - С. 10-15.

11. Инструменты мониторинга в социальных сетях. URL: http:// habrahabr.ru/post/173341/ (датаобращения: 16.02.2015)

12. Freeman L.С. Centrality in social networks, conceptual clarifications // Soc. Networks. - 1979. Vol. 1. - P. 215-236.

13. Song Q., Wang X.F. Survey of speedup techniques for shortest path algorithms // Journal of the University of Electronic Science and Technology of China. - 2012. Vol. 41, № 2. - P. 176-184.

14. URL: http://www.statisticbrain. com/ (date of handling: 16.02.2015)

15. Dalal M. K., Zaveri M.A. Opinion Mining from online user reviews using Fuzzy Linguistic Hedges // Applied Computational Intelligence and So. Computing Volume. - 2014. Vol. 2014, № 735942. - P. 1-9.

16. Bollen J., Mao H., Zeng X.-J. Twitter mood predicts the stock market // Journal of Computational Science. - 2011. Vol. 2, № 1. - P. 1-8

17. Amit P., Tejashree W., Swati Rao M. Review of Online Product using Rule Based and Fuzzy Logic // Smiley’s International Journal of Computing and Technology. - 2014. Vol. 1, P. 39-44

18. Haque Md., Rahman T. Sentiment analysis by using fuzzy logic // International Journal of Computer Science, Engineering and Information Technology (IJCSEIT). - 2014. Vol. 4, № 1. - P. 33-48

19. Denecke K. Using SentiWordNet for multilingual sentiment analysis // Proceedings International Conference on Data Engineering. 2008. № 4498370. - P. 507-512

20. Zadhe L. The Concept of a Linguistic Variable and its Applications to Approximate Reasoning. - M.: Mir, 1976. - 165 P.

21. Leekwijck W.V., Kerre E. E. Defuzzification: criteria and classification // Fuzzy Sets and Systems. - 1999. Vol. 108, № 2. - P. 159-178

22. Yefremov A.A. New operations on fuzzy numbers and intervals // Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki. - 2013 - №. 1(27). - C. 95-99

23. Khodashinsky I.A. Nechetkologicheskoe evaluation values // Izvestiya Tomskogo politehnicheskogo universiteta. - 2003. -T. 306, № 3. - S. 10-15.

24. Monitoring tools in social networks. URL: http://habrahabr.ru/post/173341/ (date of handling: 16.02.2015)

25. Freeman, L.С. Centrality in social networks, conceptual clarifications // Soc. Networks. - 1979. V. 1. - pp. 215-236.

26. Song, Q., Wang, X.F. Survey of speedup techniques for shortest path algorithms // Journal of the University of Electronic Science and Technology of China. - 2012. - V. 41, № 2. - pp. 176-184.


Review

For citations:


Luneva E.E., Yefremov A.A., Banokin P.I. AUTOMATED SENTIMENT ANALYSYS EVALUATION OF SOCIAL NETWORK USERS BASED ON FUZZY LOGIC. Statistics and Economics. 2015;(3):249-254. (In Russ.) https://doi.org/10.21686/2500-3925-2015-3-249-254

Views: 746


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3925 (Print)