Preview

Statistics and Economics

Advanced search

Quantitative assessment of the potential of retail outlets

https://doi.org/10.21686/2500-3925-2019-3-61-69

Abstract

Purpose  of the study.  Improving  the  speed and  efficiency  of decision-making on the development  of sales of products by manufacturing companies  based on the application  of quantitative  estimates of the potential  of retail  outlets,  using automated  methods  of intellectual data analysis of Big Data.

In order to create new mechanisms  for the intellectual  management of enterprises (economic agents) in the concept of the digital economy, it is necessary  to simulate  the  processes of their  interaction  in  the organizational  market  environment  from the perspective of   a multi-agent  approach.  The  approach  describes cybernetic  mechanisms of interaction  of agents with  the ability to adapt  to the needs of the population  based  on  the  analysis  of market  situations  in  order  to develop  intelligent  management  systems  for enterprises  to increase their market  potential  and  competitiveness.  Today  the paradigm  of open complex systems is used to simulate and analyze the mechanisms and processes of interaction  of agents in the market  environment. The main modern functioning of enterprises are corporate information systems,  telecommunication networks, Internet  technologies,  mobile communication systems,  Big Data,  technologies of intellectual  analysis, forecasting and machine  learning. In addition,  information  for modeling,  research and  analysis  of the market  and  the behavior  of agents can be collected from open sources on the Internet.  In the field of mass sales, the result of the introduction of innovative  technologies is the support of decision-making in the process of managing the sales of goods and  services in order to synthesize  effective business-strategies for the production  and  sale of goods, aimed  at increasing the company’s  profits.

From the point of view of the manufacturer, it is necessary to carry out strategic and tactical planning for the deployment  and maintenance of the  sales network  through  retail  outlets that  implement  or have the potential to realize the company’s products. In the overwhelming majority of cases, experts make the collection and analysis of objective data  on outlets,  and  the models  for building  quantitative  estimates of the potential of outlets are used only the internal data on the sale of goods or partners.

Materials and methods. The solution is based on the analog method of assessing the attractiveness  of the outlet, used in marketing.  Data mining  techniques  (various  clustering methods)  and  the  method  of mathematical statistics  - variance  analysis  are  also  used  to solve this problem.

Modern methods of processing large volumes of data and their intellectual  analysis  allow  us to offer new  methods  for quantifying potential based on the analysis of the whole diversity of data stored in the open information  sources.

Results. A multi-stage method of quantitative  assessment of the potential of retail outlets in ruble equivalent  was proposed. A method  has been developed for dividing retail outlets into strata based on features describing the position of the retail outlets, competitive environment, transport accessibility,  and a typical consumer. A modification  of the K-means clustering method  is proposed.

Conclusion.  The  paper proposes an  approach  to solving the  task  of promoting a wide range of products by the manufacturer  through existing distribution  networks.  A method  for quantitative  assessment  of the potential of outlets is proposed. The  proposed method  is based on the analog method of comparing outlets and uses the methods of clustering outlets across a wide range of indicators. The  results of approbation of the approach on the data for 33 regions of the Russian  Federation are given. The  results of the work  are planned  to be used in the future to solve the problem of building a matrix of consumer preferences for outlets.

About the Author

K. A. Lychagin
ZAO «EC-leasing»
Russian Federation

Kirill  A. Lychagin - Head  of the Department  for the Development of Analytical  Systems.

Moscow.



References

1. Buresh O.V., Zhuk M.A. Intellektual’nyye informatsionnyye sistemy upravleniya sotsial’no-ekonomicheskimi ob”yektami = Intellectual information systems for management of socio-economic objects. Moscow: Krasand; 2012. 192 p. (In Russ.)

2. Larichev O. I., Petrovskiy A. B. Decision support systems: current status and development prospects. Itogi nauki i tekhniki = Results of science and technology. 1987; 21: 131-164. (In Russ.)

3. Toropov V.D. The method of constructing statistical models with incomplete data based on expert information. Problemy teorii i praktiki upravleniya = Problems of the theory and practice of management. 2006; 5: 22-34. (In Russ.)

4. Rassel B. A. et al. Iskusstvennyy intellekt: sovremennyy podkhod. = Artificial intelligence: a modern approach. Ed. B. A. Rassela. 2nd ed. Moscow: Williams Publishing House; 2006. 1408 p. (In Russ.)

5. Lyuger L. V., Dzhordzh F. Iskusstvennyy intellekt: strategii i metody resheniya slozhnykh problem. = Artificial Intelligence: Strategies and Methods for Solving Difficult Problems. 4th ed. Moscow: Williams Publishing House; 2003. 864 p. (In Russ.)

6. Trofimova L.A., Trofimov V.V. Metody prinyatiya upravlencheskikh resheniy. = Management decision-making methods. Moscow: Yurayt; 2014. 336 p. (In Russ.)

7. Tebekin A.V. Metody prinyatiya upravlencheskikh resheniy. = Management decision-making methods. Moscow: Yurayt; 2014. 572 p. (In Russ.)

8. Power D. J. What is a DSS? [Electronic resource]. The On-line Executive Journal for Data-Intensive Decision Support. 2013. URL: www. dssresources.com/vita/djphomepage.html.

9. Yudin D.B. Vychislitel’nyye metody teorii prinyatiya resheniy. Moscow: KD Librokom; 2014. 320 p.

10. Cheng K. Chen, H. Sun, Y. Zhang, F. Tao Data and knowledge mining with big data towards smart production. J. Indust. Inf. Integr.; 2018; 9: 1-13. doi:10.1016/j.jii.2017.08.001

11. Dubow J. Big Data and Urban mobility – Cairo June 2; 2014. The World Bank Group; 2014. 22 p.

12. Frenks B. Revolyutsiya v analitike. Kak v epokhu Big Data uluchshit’ vash biznes s pomoshch’yu operatsionnoy analitiki. = Revolution in analytics. How to improve your business in the era of Big Data with operational analytics Alpina Pablisher; 2016. (In Russ.)

13. Litvak B.G. Upravlencheskiye resheniya. = Management decisions. Moscow: Moscow Financial and Industrial Academy; 2012. 512 p. (In Russ.)

14. Finogeyev A.G. Building decision support systems in the framework of the information-synergetic concept of management. Izvestiya Vuzov (Povolzhskiy region) = News of universities (Volga region). 2003; 1: 108-120. (In Russ.)

15. Shmid A. V. et al.. Novyye metody raboty s bol’shimi dannymi: pobednyye strategii upravleniya v biznes-analitike: Nauchno-prakticheskiy sbornik. = New Methods of Working with Big Data: Victorious Management Strategies in Business Analytics: Scientific and Practical Compendium. Moscow: Palmyr; 2016. 528 p. (In Russ.)

16. A. McAfee, E. Brynjolfsson. Big data: the management revolution. Harvard business review. 2012; 90 (10): 60-68.

17. Sallivan M., Edkok D., Marketing v roznichnoy torgovle. = Retail Marketing. Saint Petersburg: Neva; 2004. 137 p. (In Russ.)

18. Klemashev N.I., Komarov I.V., Pozin B.A. Determining sales potential of retail stores using information about other stores and geo-data. Analytics and data management in data-intensive areas.. Analitika i upravleniye dannymi v oblastyakh s intensivnym ispol’zovaniyem dannykh. Sbornik trudov XVIII Mezhdunarodnoy konferentsii RCDL’2016 = Analytics and data management in data-intensive areas. Proceedings of the XVIII International Conference RCDL’2016 (October 11–14; 2016, Ershovo, Moscow Region, Russia). Moscow: FITS IU RAS; 2016. (In Russ.)

19. Dubrov A.M. Mkhitaryan V. S., Troshin L.I. Mnogomernyye statisticheskiye metody. = Multidimensional statistical methods. Moscow: Finansy i statistika = Finance and Statistics; 2003. 345 p. (In Russ.)

20. Kolemayev V.A., Kalinina V.N. Teoriya veroyatnostey i matematicheskaya statistika. = Theory of Probability and Mathematical Statistics. Moscow: INFRA-M; 2001. 302 p. (In Russ.)

21. Zotov V.V. Assortimentnaya politika firmy. = Assortment policy of the company. Moscow: Eksmo; 2006. (In Russ.)

22. Zhukova L.V., Chugunov V.R., Kovaleva A.S., Kovalchuk I.M. Mathematical Methods of Grouping Data for Making Managerial Solutions in the Tasks of Planning. Actual Problems of System and Software Engineering 2017. Proceedings of the 5th International Conference on Actual Problems of System and Software Engineering. Moscow, Russia, November 14-16. Aachen: CEUR Workshop Proceedings; 2017; 1989. 408 P: 333-341.

23. Phillips S. J. Acceleration of k-means and related clustering algorithms. Workshop on Algorithm Engineering and Experimentation. Springer Berlin Heidelberg; 2002: 166-177.

24. Elkan C. Using the triangle inequality to accelerate k-means. ICML. 2003; 3: 147-153.


Review

For citations:


Lychagin K.A. Quantitative assessment of the potential of retail outlets. Statistics and Economics. 2019;16(3):61-69. (In Russ.) https://doi.org/10.21686/2500-3925-2019-3-61-69

Views: 886


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3925 (Print)