The problems of numerical inequalities estimates
https://doi.org/10.21686/2500-3925-2018-4-4-15
Abstract
The purpose of this paper is to compare the shortcomings of the widely used inequality coefficients that appear when working with real (ie, knowingly incomplete) data and searching for alternative quantitative methods for describing inequalities that lack these shortcomings.
Research methods:
– consideration of an extensive range of as full as possible real data on the population distribution by income, expenditure, property (ie data on the economic structure of society);
– revealing the specific shortcomings of these data on the economic structure of society, finding out which information is missing or presented disproportionately;
– comparison of the values of the most widely used indices of inequality calculated on real data on the economic structure, with a view to establishing the suitability of these indicators for problems of inequality estimation;
– development of an index of inequality that adequately describes the real economic structure of society.
Research data:
– official data of Rosstat and the Federal Tax Service on incomes of Russian citizens;
– specialized sites of announcements about the prices for real estate and cars;
– Credit Suisse Research Institute data on the distribution of Russian citizens by property level;
– Forbes data on income and wealth of the richest people in Russia.
It is shown that the income data are essentially incomplete and fragmentary – the width of the income range (i.e., the income of therichest member of society) is known, but the filling of rich cohorts is not known, since the incomes of the richest members of society are hidden.
We proposed the next (criteria as) requirements for an inequality index:
– possibility of calculating the index of inequality for arbitrary quantization;
– invariance of the value of the inequality index for different quantization of the same data;
– sensitivity of the index to the width of the income range.
It is noted that only the exponential function describes societies with high social inequality enough well (the intensity of the exponential distribution is more than 10).
For the presented population distributions, the next indices of inequality are calculated:
– decile coefficient of funds;
– Gini coefficient;
– Pareto index;
– indicators of total entropy (zero, first or Tayle index, and second orders);
– the ratio of maximum income (property value) to the modal;
– intensity of exponential distribution.
It is shown, that:
– the value of the Pareto index does not have a unique relationship with the inequality;
– the coefficients of the funds (decile, quintile, etc.) are not computable for arbitrary quantization, and therefore are unsuitable for comparing data from various sources and have different quantization;
– The Gini index requires complete data on the rich;
– from all considered criteria of inequality the first three indicators of the total entropy, as well as the ratio of maximum income (property) to the modal strongly depend on data quantization.
Therefore they are unsuitable for comparison data from various sources with different quantization. It is concluded that the intensity of the exponential distribution does not possess the listed disadvantages and can be recommended as an index of inequality.
About the Authors
Viktor A. KapitanovRussian Federation
Cand. Sci. (Engineering), Leading Specialist, Bureau of Innovation Development, Scientific and Technical Department
Anna A. Ivanova
Cand. Sci. (Engineering), Leading Researcher
Aleksandra Y. Maksimova
Cand. Sci. (Engineering), Scientific Secretary
References
1. Davis H.T. Political statistic. Evanston, Illinois: The Principia Press of Illinois, 1954. 365 p., P. 195. URL: https://babel.hathitrust.org/cgi/pt?id=mdp.39015065433917;view=1up;seq=386
2. Osberg L. “On the limitations of some current usages of the Gini Index” Dalhousie University Working Paper. April 2016. No. 2016-01. URL: https://www.dal.ca/content/dam/dalhousie/pdf/faculty/science/economics/researcharchives/A note on limitations working paper.pdf
3. Loshchinin M.B. Ogromnoye sotsial’noye neravenstvo: obshcheteoreticheskiy i eticheskiy aspekty. Ekonomist. 2012. No.3. P. 30–41. (In Russ.)
4. The Authors
5. Federal’naya sluzhba gosudarstvennoy statistiki. «Rossiya v tsifrakh – 2016 g.». «2. 7.6. Denezhnyye dokhody i udel’nyy ves raskhodov v denezhnykh dokhodakh naseleniya (v protsentakh k obshchemu ob”yemu)». URL: http://www.gks.ru/bgd/regl/b16_11/IssWWW.exe/Stg/d01/07-06.doc. (In Russ.)
6. Federal’naya nalogovaya sluzhba Rossii. «Otchet o nalogovoy baze i strukture nachisleniy po nalogu na dokhody fizicheskikh lits za 2015 god, uderzhivayemomu nalogovymi agentami po sostoyaniyu na 16.01.2017. Razdel II. Summy dokhodov fizicheskikh lits po dannym formy 2-NDFL s priznakom «1». Razdel III. Svedeniya o dokhodakh fizicheskikh lits (punkt 5 stat’i 226, punkt 14 stat’i 226.1 NK RF) po dannym formy 2-NDFL s priznakom «2»». URL: https://www.nalog.ru/rn77/related_activities/statistics_and_analytics/forms/#t1 (In Russ.)
7. «Informatsiya o metodikakh rascheta pokazateley, ispol’zuyemykh dlya monitoringa vypolneniya porucheniy, soderzhashchikhsya v Ukazakh Prezidenta Rossiyskoy Federatsii ot 07 maya 2012 goda No. 596-606». P. 42. «Real’nyye raspolagayemyye denezhnyye dokhody naseleniya (protsentov)». URL: http://www.gks.ru/metod/metodika.htm (In Russ.)
8. SAA Finance. «Registratsiya kompaniy. VNZH&PMZH&Grazhdanstva». URL: http://saa-finance.com (In Russ.)
9. 200 bogateyshikh biznesmenov Rossii. Forbs. 2015. URL: http://www.forbes.ru/rating/200-bogateishikh-biznesmenov-rossii-2015/2015#all_rating. (In Russ.)
10. Federal’naya nalogovaya sluzhba Rossii. «Otchet o deklarirovanii dokhodov fizicheskimi litsami. Razdel 1». 2015. URL: https://www.nalog.ru/rn77/related_activities/statistics_and_analytics/forms/#t1 (In Russ.)
11. Federal’naya sluzhba gosudarstvennoy statistiki. «Rossiya v tsifrakh – 2016 g.». «7.9. Raspredeleniye naseleniya po velichine srednedushevykh denezhnykh dokhodov (v protsentakh k itogu)». URL: http://www.gks.ru/bgd/regl/b16_11/Main.htm. (In Russ.)
12. Credit Suisse Research Institute. Global wealth databook 2016. http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=AD6F2B43-B17B-345E-E20A1A254A3E24A5. «Table 6-5: Wealth shares and minimum wealth of deciles and top percentiles for regions and selected countries, 2016»
13. «Kupit’ b/u avto s probegom v Rossii.» URL: http://www.avtopoisk.ru/car?priceCurrency=RUR&state=all&sort=d&sortd=d (In Russ.)
14. Avito. «Vse ob”yavleniya v Rossii / Transport / Avtomobili» URL: https://www.avito.ru/rossiya/avtomobili#/ (In Russ.)
15. Avito. «Vse ob”yavleniya v Rossii / Nedvizhimost’ / Kvartiry / Prodam». URL: https://www.avito.ru/rossiya/kvartiry/prodam?s=101 (In Russ.)
16. Luk’yanova A.L. Dinamika i struktura neravenstva po zarabotnoy plate (1998— 2005 gg.): Preprint WP3/2007/06. Moscow: GU VSH•E, 2007. 68 P. URL: https://www.hse.ru/pubs/share/direct/document/78807205. (In Russ.)
17. Kislitsyna O.A. Neravenstvo v raspredelenii dokhodov i zdorov’ya v sovremennoy Rossii. Moscow: RITS IS•EPN. 2005. 376 P. P. 37. URL: http://kislitsyna.ru/data/files/inequality/Glava2.pdf (In Russ.)
18. Coudouel A., Hentschel J., Wodon Q. «Poverty Measurement and Analysis» World Bank, April 2002, Prilozheniye A – Izmereniye i analiz bednosti. Tekhnicheskiye primechaniya. URL: http://mpra.ub.uni-muenchen.de/10492/
19. Oshchepkov A. YU. Neravenstvo v zarabotkakh: rol’ professiy: preprint WP3/2011/03 Moscow: Izd. dom Vysshey shkoly ekonomiki, 2011. 84 p., P.16. URL: https://www.hse.ru/pubs/share/direct/document/64660294 (In Russ.)
20. Nivorozhkina L.I., Arzhenovskiy S.V., Safarova L.A. Statisticheskoye otsenivaniye urovnya neravenstva i bednosti rossiyskikh domokhozyaystv (al’ternativnyy podkhod na osnove dekompozitsii koeffitsiyenta Dzhini). Uchet i statistika. 2007. No. 2 (10). P. 155-163. URL: https://cyberleninka.ru/article/v/statisticheskoe-otsenivanie-urovnya-neravenstva-i-bednosti-rossiyskih-domohozyaystv-alternativnyy-podhod-na-osnove-dekompozitsii (In Russ.)
21. Mussard S., Alperin M. N., Seyte F., Terraza M. Extensions of Dagum’s Gini decomposition. International Conference in Memory of Two Eminent Socia Scientists: C. Gini and M. O. Lorenz. Their impact in the XX-th century development of probability, statistics and economics. February 2005. URL: https://www.researchgate.net/publication/24130333_Extensions_of_Dagum’s_Gini_decomposition
22. Kaya E., Semesen U. Gini Decomposition by Gender : Turkish Case // Brussels Economic Review, ULB -- Universite Libre de Bruxelles, 2010. T. 53(1). P. 59-83. URL: https://www.researchgate.net/publication/227380595_Gini_Decomposition_by_Gender_Turkish_Case
23. Nikitin A.P., CHernavskaya O.D., CHernavskiy D.S. Raspredeleniye Pareto v dinamicheskikh sistemakh, nakhodyashchikhsya v sh•chmovom pole. RAN. Trudy Instituta obshchey fiziki im. A.N. Prokhorova. 2009. Vol. 65. P. 107-123. (In Russ.)
24. Ishkhanyan M.V., Karpenko N.V. Ekonometrika. CHast’ 1. Parnaya regressiya: Uchebnoye posobiye. Moscow: MGUPS (MIIT), 2016. 117 P. P. 14. URL: http://ml.miit-ief.ru/Metodicheskaya literatura kafedry Matematika/Ishkhanyan MV, Karpenko NV Ekonometrika CHast’ 1 Parnaya regressiya.pdf (In Russ.)
25. Pirs D. U. Obshch. red. Slovar’ sovremennoy ekonomicheskoy teorii Makmillana. Moscow: INFRA-M, 2003. 608 P. P. 297 (In Russ.)
26. Radayev V.V. Ekonomicheskaya sotsiologiya. Kurs lektsiy. Moscow: Aspekt Press, 1997. 368 P. P. 230 (In Russ.)
27. Romanovskiy M.YU., Romanovskiy YU.M. Vvedeniye v ekonofiziku: statisticheskiye i dinamicheskiye modeli. Ed.2nd. Moscow-Izhevsk: Institut komp’yuternykh issledovaniy, 2012. 340 p. (In Russ.)
28. Banerjeea A., Yakovenko V. M., Di Matteo T. A study of the personal income distribution in Australia. Physica A: Statistical Mechanics and its Applications. Physica A 370 (2006) P. 54–59. URL: http://www2.physics.umd.edu/~yakovenk/papers/PhysicaA-370-54-2006.pdf (In Russ.)
Review
For citations:
Kapitanov V.A., Ivanova A.A., Maksimova A.Y. The problems of numerical inequalities estimates. Statistics and Economics. 2018;15(4):4-15. (In Russ.) https://doi.org/10.21686/2500-3925-2018-4-4-15