Preview

Statistics and Economics

Advanced search

THE ADVANTAGES OF THE DISTRIBUTION FUNCTION AS A METHOD OF GRAPHICAL REPRESENTATION OF THE ECONOMIC STRUCTURE OF SOCIETY

https://doi.org/10.21686/2500-3925-2018-1-4-16

Abstract

The aim of the paper is to compare three different methods of graphical representation of the inequality: using frequency polygons, Lorentz curves and distribution functions. It is shown that for the representation of real (i.e. incomplete) data, the last is most appropriate. The method of investigation consists in verifying the conformity of the method of graphical representation of inequality to the following three requirements:

1. Insensitivity of the method to the quantization of data.

2. Sensitivity to the width of the entire range of income from zero to income of the richest person provided that information about the wealthy members of society might be incomplete.

3. Visibility. The curve, describing the inequality must have characteristic points (extremes, bends) so that it can be somehow identified. The presence of features in the economic structure of society must be reflected in the qualitative behavior of the curves. The demand is caused by the necessity to draw a conclusion about the mechanism of the movement of goods in society, which led to the appearance of a curve of exactly this form.

The work analyzed direct data on the incomes of Russian citizens published by ROSSTAT (Federal State Statistics Service), Forbes magazine and the Federal Tax Service, indirect data on incomes determined by the distribution of car prices (from two independent sources) and real estate, as well as data from the Credit Suisse Research Institute about property inequality in Russia. The following main conclusions were made. The course of the curves that characterize the real distribution of the population by income, suggests that in society there is only one mechanism for the movement of goods. This is a mechanism of rank exchange, in which the interaction of rich and poor economic agents is characterized by a shift in market prices in favor of the rich and the greater, the more resources the latter has.

The frequency polygons (and therefore the histograms) do not correspond to the first requirement, the Lorentz curves for the second and the third and only the distribution functions correspond to all three of the above requirements, and therefore can be recommended as the main method of graphical representation of the inequality.

The curves of distribution functions from five independent sources (ROSSTAT and Forbes summary data, ROSSTAT and Federal Tax Service summary data, data from two sources on car prices, real estate prices), built on a single chart, practically coincided. Mutual verification of these data allows us to state that they characterize the true picture of inequality inRussia. ROSSTAT data on inequality are substantially underestimated, as well as the data of the Credit Suisse Research Institute (the latter, to a lesser extent).

To assess real inequality, information about the incomes of the richest members of society is important, since 99.976% of the population occupy only 0.0058% of the income scale. 

About the Authors

V. A. Kapitanov
JSC Polyus research institute of M.F. Stelmakh
Russian Federation

Victor A. Kapitanov  – Cand. Sci. (Engineering), Leading specialist, Scientific and technical department 

Moscow



A. A. Ivanova
State Institution "Institute of Applied Mathematics and Mechanics"

Anna A. Ivanova  – Cand. Sci. (Engineering), Senior researcher

Donetsk



A. Yu. Maksimova
State Institution "Institute of Applied Mathematics and Mechanics"

Alexandra Yu. Maksimova  – Cand. Sci. (Engineering), Scientific Secretary 

Donetsk



References

1. Davis H.T. Political statistic. Evanston, Illinois: The Principia Press of Illinois, 1954. 365 p. URL: https://babel.hathitrust.org/cgi/pt?id=mdp.3 9015065433917;view=1up;seq=386

2. Kislitsyna O.A. Neravenstvo v raspredelenii dokhodov i zdorov'ya v sovremennoy Rossii. Moscow: RITs ISEPN, 2005. 376 p. URL: http://www.kislitsyna.ru/characters.php?id=1 (In Russ.)

3. He K., Meeden G. Selecting the Number of Bins in a Histogram: A Decision Theoretic Approach. Journal of Statistical Planning and inference. 1997. 61(1). P. 49–59. (In Russ.)

4. Romanovskiy M.Yu., Romanovskiy Yu.M. Vvedenie v ekonofiziku: Statisticheskie i dinamicheskie modeli. Izhevsk: Institut komp'yuternykh issledovaniy, 2012. 340 p. (In Russ.)

5. Avtostat. Analiticheskoe agentstvo. Sootnoshenie pervichnogo i vtorichnogo rynkov legkovykh avtomobiley v rossiyskikh regionakh. URL: https:// www.autostat.ru/press-releases/30277/ (In Russ.)

6. Avtostat. Analiticheskoe agentstvo. Dinamika prodazh avtomobiley po segmentam v pervom polugodii 2017 goda. URL: https://www.autostat.ru/news/30748/ (In Russ.)

7. . Kupit' b/u avto s probegom v Rossii. URL: http://www.avtopoisk.ru/car?priceCurrency=RUR&state=all&sort=d&sortd=d (In Russ.)

8. Kapelyushnikov R.I. Neravenstvo: kak ne primitivizirovat' problemu (kriticheskie zametki). Seriya WP3 «Problemy rynka truda». Moscow: Izd. dom Vysshey shkoly ekonomiki, 2016. 40 p. (In Russ.)

9. Il'in V.I., Mezinova O.V. Sotsial'no-politicheskoe neravenstvo i stabil'nost': istoriya i sovremennost'. Srednerusskiy vestnik obshchestvennykh nauk. 2007. No.4(5). P. 17-25. URL: https://cyberleninka.ru/article/n/sotsialno-politicheskoeneravenstvo-i-stabilnost-istoriya-i-sovremennost (In Russ.)

10. Il'in I.A. Ya vglyadyvayus' v zhizn'. Kniga razdumiy. Moscow: Eksmo, 2007. 528 p. (In Russ.)

11. Berdyaev N.A. Filosofiya neravenstva. Moscow: Institut russkoy tsivilizatsii, 2012. 624 p. (In Russ.)

12. Kuzmichev Yu.G., Orlova M.I., Burova O.N., Gurenko S.P., Lazareva E.P. Otsenochnye tablitsy fizicheskogo razvitiya donoshennykh novorozhdennykh detey goroda Nizhnego Novgoroda. Vrachaspirant. 2013. Vol. 59. No. 4.3. P. 494–498. URL: http://vrach-aspirant.ru/articles/pediatrics/13334/ (In Russ.)

13. Kapitanov V.A., Ivanova A.A. Neravenstvo i rangovyy obmen. Rossiya: tendentsii i perspektivy razvitiya. RAN INION: Ezhegodnik. 2017. Iss. 12. Part 1. P. 661–668. (In Russ.)

14. Federal'naya sluzhba gosudarstvennoy statistiki. «Rossiya v tsifrakh – 2016 g.». «7.9. Raspredelenie naseleniya po velichine srednedushevykh denezhnykh dokhodov (v protsentakh k itogu)». URL: http://www.gks.ru/bgd/regl/b16_11/Main.htm. (In Russ.)

15. Federal'naya sluzhba gosudarstvennoy statistiki. «Rossiya v tsifrakh – 2016 g.». «2. 7.6. Denezhnye dokhody i udel'nyy ves raskhodov v denezhnykh dokhodakh naseleniya (v protsentakh k obshchemu ob"emu)». URL: http://www.gks.ru/bgd/regl/b16_11/IssWWW.exe/Stg/d01/07-06.doc. (In Russ.)

16. Federal'naya nalogovaya sluzhba Rossii. «Otchet o deklarirovanii dokhodov fizicheskimi litsami. Razdel 1». URL: https://www.nalog.ru/rn77/related_activities/statistics_and_analytics/forms/#t1 (In Russ.)

17. «Forbs». «200 bogateyshikh biznesmenov Rossii». URL: http://www.forbes.ru/rating/200-bogateishikh-biznesmenov-rossii-2015/2015#all_rating. (In Russ.)

18. Kurs dollara SShA v 2015 godu. URL: https://ratestats.com/dollar/2015/ (In Russ.)

19. Federal'naya nalogovaya sluzhba Rossii. «Otchet o nalogovoy baze i strukture nachisleniy po nalogu na dokhody fizicheskikh lits za 2015 god, uderzhivaemomu nalogovymi agentami po sostoyaniyu na 16.01.2017. Razdel II. Summy dokhodov fizicheskikh lits po dannym formy 2-NDFL s priznakom «1». Razdel III. Svedeniya o dokhodakh fizicheskikh lits (punkt 5 stat'i 226, punkt 14 stat'i 226.1 NK RF) po dannym formy 2-NDFL s priznakom «2»». URL: https://www.nalog.ru/rn77/related_activities/statistics_and_analytics/forms/#t1 (In Russ.)

20. «Informatsiya o metodikakh rascheta pokazateley, ispol'zuemykh dlya monitoringa vypolneniya porucheniy, soderzhashchikhsya v Ukazakh Prezidenta Rossiyskoy Federatsii ot 07 maya 2012 goda No. 596–606». P. 42. «Real'nye raspolagaemye denezhnye dokhody naseleniya (protsentov)» URL: http://www.gks.ru/metod/metodika.htm (In Russ.)

21. SAA Finance. Registratsiya kompaniy. VNZh&PMZh&Grazhdanstva. URL: http://saafinance.com (In Russ.)

22. Kolmakov I.B. Metody prognozirovaniya pokazateley urovnya bednosti s uchetom obezdolennykh grupp naseleniya // Problemy prognozirovaniya. 2008. No. 5. P. 95–109. (In Russ.)

23. Avito. Vse ob"yavleniya v Rossii / Transport / Avtomobili. URL: https://www.avito.ru/rossiya/avtomobili?s=101 (In Russ.)

24. Avito. Vse ob"yavleniya v Rossii / Nedvizhimost' / Kvartiry / Prodam. URL: https://www.avito.ru/rossiya/kvartiry/prodam?s=101 (In Russ.) 2

25. Federal'naya sluzhba gosudarstvennoy statistiki. Zhilishchnoe khozyaystvo v Rossii – 2016 g. Chislo zaregistrirovannykh prav grazhdan i yuridicheskikh lits na zhilye pomeshcheniya na osnovanii dogovorov kupli-prodazhi. URL: http://www.gks.ru/bgd/regl/b16_62/Main.htm. (In Russ.)

26. Piketti T. Kapital v XXI veke. Moscow: Ad Marginem Press, 2016. 592 p. (In Russ.)

27. Credit Suisse Research Institute. Global wealth databook 2016. «Table 6-5: Wealth shares and minimum wealth of deciles and top percentiles for regions and selected countries, 2016». URL: http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=AD6F2B43-B17B-345EE20A1A254A3E24A5


Review

For citations:


Kapitanov V.A., Ivanova A.A., Maksimova A.Yu. THE ADVANTAGES OF THE DISTRIBUTION FUNCTION AS A METHOD OF GRAPHICAL REPRESENTATION OF THE ECONOMIC STRUCTURE OF SOCIETY. Statistics and Economics. 2018;15(1):4-16. (In Russ.) https://doi.org/10.21686/2500-3925-2018-1-4-16

Views: 1152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3925 (Print)