АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ ПРОМЫШЛЕННЫМ РЕАКТОРОМ

УДК 681.51 + 66.011

Вячеслав Константинович Маевский,

к.т.н., доцент, Московский государственный университет экономики, статистики и информатики (МЭСИ), Ярославский филиал

Тел.: 8 (910) 976-52-88 Эл. почта: vmaevsky@mail.ru

В работе дается описание математической модели промышленного химического реактора по получению синтетического каучука. В ходе работы реактора параметры модели значительно изменяются. Для создания алгоритма управления проводится преобразование математической модели реактора с целью получение зависимостей, с помощью которых можно определять изменяющиеся параметры модели в ходе работы реактора.

Ключевые слова: химический реактор, математическая модель, идентификация параметров модели, алгоритм управления, адаптивное управление.

Vyacheslav K. Mayevski,

PhD in Technical Sciences, Associate Professor, Moscow State University of Economics, Statistics and Informatics (MESI), Yaroslavl branch Tel.: 8 (910) 976-52-88 E-mail: vmaevsky@mail.ru

ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

Keywords: chemical reactor, mathematical model, the identification of the model parameters, the control algorithm, adaptive control.

1. Введение

Адаптивное управление сложным динамическим объектом с быстроизменяющимися характеристиками в условиях его промышленной эксплуатации является весьма актуальной задачей. Проблема заключается в том, что изменяющиеся в ходе работы объекта характеристики невозможно измерить. Поэтому применяются различные способы идентификации параметров объекта. В частности, метод активного эксперимента, то есть в ходе эксплуатации объекта наносятся возмущающие воздействия. Одним из наиболее емких по количеству определяемых параметров является используемый в работе частотный метод параметрической идентификации объектов.

Таким объектом в данной работе является промышленный химический реактор по получению синтетического каучука. Для идентификации параметров реактора в ходе его работы используется математическая модель реактора. С использованием определяемых в ходе работы реактора параметров рассчитываются оптимальные настройки основного регулятора – регулятора температуры в реакторе, и управляющие воздействия на задания регуляторов: расхода шихты в реактор и температуры в реакторе.

2. Основная часть

Рассматривается система управления химическим реактором, представленная на рисунке 1.

Реактор представляет из себя кожухотрубный теплообменник, снабженный для организации интенсивного теплообмена центральной трубой с высокопроизводительным осевым насосом. Процесс получения каучука непрерывный. В реактор подаются шихта – смесь двух мономеров и растворителя, и катализаторный раствор, а выводится полимеризат – смесь полученного каучука и остатков мономеров с растворителем. Расход шихты измеряется с помощью датчика 1 и стабилизируется с помощью локального регулятора 2 и регулирующего клапана 3. Реакция сополимеризации мономеров экзотермическая с выделением большого количества тепла. В качестве хладоагента используется кипящий этилен, находящийся в межтрубном пространстве реактора. Давление паров этилена измеряется с помощью датчика 4 и стабилизируется с помощью локального регулятора 5

Рис. 1. Адаптивная система управления химическим реактором

Экономика, Статистика и Информатика 205

№4, 2014

и регулирующего клапана 6. Расход катализаторного раствора в реактор измеряется с помощью датчика 7 и стабилизируется с помощью локального регулятора 8 и регулирующего клапана 9. Температура в реакторе регулируется изменением расхода катализаторного раствора. Датчик температуры 10 установлен в области ввода катализаторного раствора. На выходе из реактора установлен непрерывный анализатор концентрации основного мономера 11. В вычислительное устройство поступают данные от всех измерительных датчиков. Например, от датчика силы тока 12, потребляемого электродвигателем осевого насоса (мешалки). В вычислительном устройстве вырабатываются задания для всех локальных регуляторов. Регулятор температуры в реакторе реализован в самом вычислительном устройстве.

Особенностью процесса является постепенное залипание полимером теплопередающей поверхности реактора - забивка реактора полимером. Лабораторные исследования данного процесса [1] показали, что реакция идет непосредственно в области ввода катализаторного раствора с очень высокой скоростью - в факеле. Поэтому, несмотря на то, что в реакторе проводится интенсивное перемешивание, реакционное пространство реактора описывается ячеечной моделью с обратными потоками, состоящими из двух ячеек или зон: зоны, где происходит реакция сополимеризации и зоны, где происходит охлаждение реактора. Характерной особенностью данного процесса является возможность вымораживания на теплопередающей поверхности реактора кристаллической пленки, представляющей из себя твердый раствор системы: растворитель мономеры. Предполагается, что эта пленка предохраняет стенки реактора от налипания полимера. Рассмотрим математическую модель реактора.

Материальные балансы зон по основному мономеру:

$$V_n dM_n / d\tau = W_n (M_x - M_n) - (K_2 / K_3) \Pi_{np} M_n W_{ui};$$
(1)

$$V_x dM_x / d\tau = W_{uu} M_{uu} + W_n M_n - - M_x (W_{uu} + W_n);$$
(2)

где

$$\Pi_{np} = \beta (\Pi_{\kappa} W_{\kappa} - \mathcal{A}_{u}) / W_{u}.$$
(3)

Тепловые балансы зон в реакторе:

$$V_{n}C_{u}\rho_{u}dt_{n} / d\tau = X_{3}(t_{x} - t_{n}) + + h_{1}\mu M_{n}((K_{2}/K_{3})\Pi_{np}W_{u});$$
(4)
$$V_{x}C_{u}\rho_{u}dt_{x} / d\tau = X_{1}(t_{\phi} - t_{x}) + + X_{2}(t_{g} - t_{x}) + X_{3}(t_{n} - t_{x}) + Q_{1},$$
(5)

Figure $t_3 = f(P_3); X_1 = \alpha_{cm}F_1; X_2 = K_{cm}F_2; X_3 = C_{uu}\rho_{uu}W_n; V = V_x + V_n; Q_1 = Q_M + Q_{uu};$ $\rho_n \approx \rho_w$; М – концентрация основного мономера; t – температура; V – объем; W – расход потока; τ – время; C – удельная теплоемкость; *р* – плотность; Q - тепловой поток; П - концентрация катализатора; Я – концентрация ядов; *W_n* – расход потока из зоны полимеризации в зону охлаждения; Р - давление; α_{cm} – коэффициент теплоотдачи к поверхности кристаллической пленки; К_{ст} - коэффициент теплопередачи между зоной охлаждения и этиленом; F₁ и F2 - площади теплопередающей поверхности соответственно покрытой кристаллической пленкой и чистой; К₂ и К₃ - константы скорости роста и обрыва полимерной цепи; μ – молекулярная масса основного мономера; h_1 – тепловой эффект реакции сополимеризации; β – эмпирический поправочный коэффициент, учитывающий реальную активность катализатора - коэффициент использования катализатора; индексы: ш – шихта; к – катализаторный раствор; n – зона полимеризации: *x* – зона охлаждения: э – этилен: *м* – мешалка (циркуляционный насос); ф – фронт фазового превращения на поверхности кристаллической пленки.

Толщина кристаллической пленки (δ_n) на теплопередающей поверхности реактора определяется из уравнений:

$$h_2 \rho_{\pi} d\delta_{\pi} / d\tau =$$

= $K_{\delta}(t_{\phi} - t_{\gamma}) - \alpha_{cm}(t_n - t_{\phi});$ (6)

$$d\delta_{\pi} / d\tau = L\Delta t, \tag{7}$$

где: $1 / K_{\delta} = 1 / \alpha_3 + \delta_{cm} / \lambda_{cm} + \delta_n / \lambda_n$ $\Delta t = t_{\kappa p} - t_{\phi}; L = K_{\kappa p}$ при $\Delta t > 0$ и $L = K_{pa}$ при $\Delta t \le 0; t_{\kappa p} = f(M_{\chi}); \rho_n$ и h_2 , – соответственно плотность кристаллической пленки и тепловой эффект кристаллизации пленки; $K_{\kappa p}, K_{pa}$ – константы скорости кристаллизации и растворения; δ – толщина; λ – теплопроводность; α – коэффициент теплоотдачи; индексы: n – кристаллическая пленка; cm – стальная стенка, отделяющая этилен от реакционного пространства реактора; *кр* – кристаллизация; *ф* – фронт фазового превращения; э – этилен.

Ранее [1] были определены $K_{\kappa p}$ и K_{pa} и сделан вывод, что в ходе работы реактора: $t_{\phi} \approx t_{\kappa p}$, где $t_{\kappa p} =$ = 97,6 – 1,42 M_x . Адекватность представленной математической модели реактора была доказана в работе [2].

В ходе полимеризации некоторые параметры модели ректора непрерывно изменяются вследствие забивки реактора полимером. Таковыми параметрами являются: $\alpha_{cm}, K_{cm}, F_1, F_2, Q_M$. Неизвестным является также параметр β , зависящий от наличия не учитываемых примесей в катализаторе и шихте. Все указанные параметры, кроме *Q*_м, невозможно определить обычными способами. В работе определяются произведения параметров: $X_1 = \alpha_{cm} F_1, X_2 = K_{cm} F_2$, которые отражают изменения тепловых характеристик реактора в ходе полимеризации, и произведение $(K_2/K_3)\beta\Pi_{\kappa}$, из которого затем можно определить β .

Для определения такого большого количества неизвестных параметров в ходе полимеризации используется частотный метод параметрической идентификации объектов. Периодически (через каждые два часа) наносятся возмущения в виде скачкообразного изменения задания регулятору температуры. Затем анализируются установившиеся колебания переменных, которые возникают при этом в замкнутом контуре регулирования температуры в реакторе.

Для проведения параметрической идентификации модели реактора рассмотрим модели датчика температуры и регулятора температуры в реакторе. Измерение температуры в реакторе осуществляется с помощью платинового термометра сопротивления, помещенного в стальную защитную гильзу.

Тепловые балансы термометра и защитной гильзы:

$$T_T dt_T / d\tau = t_\Gamma - t_T; \tag{8}$$

$$T_{\Gamma}dt_{\Gamma}/d\tau = a(t_{T}-t_{\Gamma}) - (t_{\Gamma}-t), \quad (9)$$

где T_T , T_T – постоянные времени термометра и защитной гильзы; $T_T \approx 3,5$ мин, $a \ll 1$.

№4, 2014 **206**

Отсюда передаточная функция датчика температуры будет иметь следующий вид:

 $\Phi_1 = 1 / ((T_{\Pi}p + 1)(T_{\Pi}p + 1)).$ (10)

Передаточная функция регулятора температуры имеет вид:

$$\Phi_2 = K_R (T_d p + 1) / (0, 1T_d p + 1), \quad (11)$$

где K_R – коэффициент усиления регулятора; T_d – время предварения регулятора, в ходе полимеризации его устанавливают равным T_T ; p – оператор Лапласа.

Отсюда передаточная функция последовательно соединенных датчика температуры и регулятора температуры:

$$\Phi_3 = K_R / ((T_I p + 1)(0, 1T_I p + 1)), (12)$$

Для проведения параметрической идентификации моделей реактора и датчика температуры необходимо преобразования моделей. При этом будет учитываться, что расход потока, идущего через зону полимеризации (W_n), приблизительно равен известной производительности осевого насоса [2].

Рассмотрим статический режим. Приравнивая нулю правые части уравнений (1,2) и учитывая, что $W_{ul}(M_{ul} - M_x) / W_n \ll M_x$, получим приближенное равенство:

$$(K_2/K_3)\Pi_{np} \approx (M_{uu} - M_x) / M_{uu}.$$
 (13)

Динамические уравнения можно упростить, если учесть время переходных процессов в зонах. Вследствие очень большой скорости реакции сополимеризации, путь, на котором заканчивается реакция, должен составлять не более 0,1м. Следовательно, объем зоны полимеризации сравнительно небольшой ($V_x \approx V$), и переходные процессы в этой зоне заканчиваются значительно быстрее, нежели в зоне охлаждения. Тогда дифференциальные уравнения (1,4) материального и теплового балансов зоны полимеризации сводятся к алгебраическим:

$$W_n(M_x - M_n) - (K_2/K_3)\Pi_{np}M_nW_u \approx 0; \qquad (14)$$

$$W_n C_{ul} \rho_{ul} (t_x - t_n) + h_1 \mu M_n ((K_2/K_3) \Pi_{np} W_{ul} \approx 0;$$
 (15)

Из уравнения (14):

$$M_x = M_n / (1 + (K_2 / K_3) \Pi_{\Pi P} W_u / W_n); (16)$$

Так как $(K_2 / K_3)\Pi_{\Pi P}W_u / W_n \ll 1$, то из (16) следует $M_n \approx M_x$.

Для анализа колебательных и скачкообразных динамических режимов с небольшими отклонениями переменных от стационарного состояния математическую модель реактора можно линеаризовать разложением ее членов в ряд Тейлора. При линеаризации модели принимаются постоянными параметры: $M_{uv}, W_{uv}, P_{av}, W_{nv}, Q_1, \mathcal{A}_{uv}, \Pi_{\kappa}$.

Для анализа стационарных режимов используются усредненные значения переменных. Для усреднения значений переменных все они пропускаются через экспоненциальные фильтры с постоянными времени, равными утроенному времени пребывания в реакторе.

Линеаризуем правую часть уравнения (5) по формуле Тейлора и получаем:

$$T_x dY_x / d\tau + Y_x = a_3 Y_n; \tag{17}$$

где $T_x = \alpha_2 / (X_1 + X_2 + X_3); \ \alpha_2 = V c_{ud} \rho_{ul};$ $\alpha_3 = X_3 / (X_1 + X_2 + X_3); \ Y_n = 100\Delta t_n / t_{ulk};$ $Y_x = 100\Delta t_x / t_{ulk}.$

Преобразуем уравнение (17) по Лапласу и получаем передаточную функцию канала «изменение температуры в зоне полимеризации – изменение температуры в зоне охлаждения»:

$$\Phi_{xn} = a_3 / (T_x p + 1). \tag{18}$$

Введем зависимость отклонения концентрации основного мономера в реакторе от изменения температуры в зоне полимеризации. Благодаря быстродействующему регулятору температуры в реакторе, переходные процессы температуры в ректоре заканчиваются среднем в 10 раз быстрее переходных процессов концентрации основного мономера в реакторе. Следовательно, временем переходных процессов температуры по сравнению с временем переходных процессов концентрации основного мономера можно пренебречь. Из уравнения (2) и стационарных режимов уравнений (1, 4, 5) после линеаризации правой части полученного уравнения получим:

$$TdY_x^M / d\tau + Y_x^M = a_t Y_x, \qquad (19)$$

где $T = V / (W_{uu} + 1,42X_1h_1\mu); a_l = -t_{ulk}Z / (M_{uuk}(h_1\mu W_{uu} + 1,42X_1)); Z = X_1 + X_2; Y_x^M = 100\Delta M_x / M_{uuk}.$

В стационарном режиме из (17,19) получаем:

$$K_{pc} = X_3 a_t / (Z + X_3), \qquad (20)$$

где K_{pc} – расчетный параметр, характеризующий изменение теплопередающей способности стенок ректора в ходе полимеризации. Значения параметров X_3 и Z в (20) будем рассчитывать из установившихся колебательных режимов работы реактора.

Из уравнений (5, 15) с учетом равенства $M_n \approx M_x$ получаем:

$$Vc_{u\nu}\rho_{u\nu}dt_{x} / d\tau = X_{1}(t_{\kappa p} - t_{x}) + X_{2}(t_{3} - t_{x}) + h_{1}\mu(K_{2}/K_{3})\Pi_{np}W_{u\nu}M_{x}; \qquad (21)$$

Линеаризуем правую часть уравнения (21) с учетом зависимости $t_{\kappa p}$ от M_x , пренебрегая изменением M_x по сравнению с изменением W_{κ} . Затем приводим полученное уравнение к безразмерному виду и после преобразования найденного уравнение по Лапласу получим следующую передаточную функцию канала изменение расхода катализаторного раствора – изменение температуры в зоне охлаждения:

$$\Phi_{x\kappa} = \alpha_1 / (Z(T_1p+1));$$
 (22)

где $\alpha_1 = (W_{u\kappa}^{\kappa} / t_{u\kappa})(K_2 / K_3)\beta\Pi_{\kappa}h_1\mu M_x^0;$ $T_1 = \alpha_2 / (X_1 + X_2).$

Используя передаточные функции (12, 22), получим передаточную функции канала: «температура термометра в зоне полимеризации – задание регулятору температуры:

$$\Phi = K_R(T_x p + 1)a_4 / ((T_1 p + 1) \times (T_R p + 1) + a_4 K_R(T_x p + 1)).$$
(23)

На основании (23) решаем характеристическое уравнение замкнутого контура регулирования температуры в реакторе, в результате получаем зависимость Z от T_{Γ} :

$$Z = N(1 + L_2 / X_3) + + 2\sqrt{NL_2 - \alpha_2^2 \omega^2}, \qquad (24)$$

Экономика, Статистика и Информатика 207 №4, 2014

где $N = \alpha_2 / (T_{\Gamma} + 0, 1T_T); L_2 = a_1 K_R; \omega$ – частота свободных колебании в контуре регулирования температуры.

Используя передаточные функции (10,18,22) находим уравнение амплитудно-частотной характеристики канала «температура термометра в зоне полимеризации – расход катализаторного раствора в реактор», из которого выразим параметр *Z*:

$$Z = \sqrt{E(T_x^2 \omega^2 + 1) / a_3^2 - \alpha_2^2 \omega^2}, \quad (25)$$

где $\mathcal{B} = (\alpha_1 A_{ex} / A_{ebtx}^T)^2 / ((T_{\Gamma}^2 \omega^2 + 1)(T_{\Gamma}^2 \omega^2 + 1)); A_{ex}, A_{ebtx}^T - амплитуды колебаний расхода катализаторного раствора и температуры (датчика температуры), % шкалы измерительного прибора.$

3. Последовательность расчетов для проведения адаптивного управления реактором в ходе полимеризации

1. Определяется произведение $(K_2/K_3)\beta\Pi_{\kappa}$ из анализа статических режимов используя уравнения (3,31). В [2] было установлено, что величина $(K_2/K_3)\beta\Pi_{\kappa}$, как правило, постоянна в ходе полимеризации.

2. Определяется произведение $(K_2/K_3)\beta\Pi_{\kappa}$ из анализа статических режимов используя уравнения (3, 31). В [2] было установлено, что величина $(K_2/K_3)\beta\Pi_{\kappa}$, как правило, постоянна в ходе полимеризации.

3. Производится расчет параметров Z и T_{Γ} из системы уравнений (24, 25) на основе анализа колебательных режимов, возникающих в контуре регулирования температуры. Для этого определяются амплитуды колебаний расхода катализаторного раствора и температуры в реакторе относительно их средних значений. В [2] было установлено, что частота колебаний, как правило, постоянна в ходе полимеризации, а значение Тг постепенно увеличивается от 0 до 3–3,5 мин.

На основе проведенного расчета из анализа статических режимов рассчитываются параметры X_1 и X_2 с использованием уравнений (4, 5) в стационарном режиме и уравнения $Z = X_1 + X_2$. В [2] было установлено, что параметр X_1 уменьшается в ходе полимеризации, а параметр X_2 сначала увеличивается, а затем уменьшается.

Рассчитывается оптимальный по качеству переходного процесса коэффициент усиления регулятора температуры на основе полученной экспериментально зависимости K_R = $a + bX_1 + cX_2$. Устанавливаются оптимальные настройки регулятора температуры: коэффициент усиления, равный K_R и время предварения, равное T_{Γ} .

Рассчитываются задания регуляторам температуры и шихты, на основе материального и теплового балансов реактора в зависимости от требуемой концентрации основного мономера на выходе из реактора и требуемой производительности реактора. Концентрации основного мономера на выходе из реактора, в свою очередь, зависит от требуемого качества получаемого каучука.

4. Заключение

В работе получен алгоритм адаптивного управления промышленным химическим реактором. Параметры реактора в ходе его работы непрерывно изменяются. Для их определения периодически наносятся возмущающие воздействия в виде скачкообразного изменения задания регулятору температуры в реакторе и анализируются возникающие при этом гармонические колебания температуры в реакторе и расхода катализаторного раствора в реактор. На основе рассчитанных с помощью математической модели реактора параметров вычисляются: оптимальные настройки регулятора температуры, управляющие воздействия на задания регуляторам температуры в реакторе и расхода шихты в реактор.

Литература

1. Маевский В.К., Лукьяненко И.С., Личак Д.А. Разработка математической модели химического реактора. //Математические методы в технике и технологиях – ММТТ-23: сб. трудов XXIII Междунар. научн. конф.: в 12т., Саратов, 2010, Т.8. Секция 9. – с. 68–70.

2. Маевский В.К., Лукьяненко И.С., Личак Д.А. Параметрическая идентификация математической модели промышленного реактора. // Математические методы в технике и технологиях – ММТТ-23: сб. трудов XXIII Междунар. научн. конф.: в 12т., Саратов, 2010, Т.8. Секция 9. – с. 71–75.

References

1. Majewski V.K. Lukyanenko I.S., Lichak D.A. Develop a mathematical model of a chemical reactor. / / Matematicheskie metody v tehnike i tehnologiyah – MMTT-23: sb. trudov XXIII Mezhdunar. nauchn. konf.: v 12t., Sarahtov, 2010, T.8. Sekciya 9. – s. 68–70.

2. Majewski V.K. Lukyanenko I.S., Lichak D.A. Parametric identification of a mathematical model of an industrial reactor. // Matematicheskie metody v tehnike i tehnologiyah – MMTT-23: sb. trudov XXIII Mezhdunar. nauchn. konf.: v 12t., Sarahtov, 2010, T.8. Sekciya 9. – s. 71–75.